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Abstract 

A theory for the order in tr phases based on the 
sphere-packing model of Wilson & Spooner [Acta 
Cryst. (1973), A29, 342-352] has been examined using 
a mathematical analysis. The analysis suggests that the 
prediction of order in these phases based on lattice- 
constant variations associated with variations in atomic 
diameter should be treated with caution, particularly 
where the results are at variance with experimentally 
determined results. 

1. Introduction 

The ordering of the o phases has been discussed in 
terms of two determining factors: electronic con- 
figuration, and size of the constituent atoms. Hansen & 
Raman (1970) have made a study of the electron 
concentration and variations in the lattice parameters 
with composition of binary and ternary phases. Wilson 
& Spooner (1973) have proposed a sphere-packing 
model in which the occupancy of each atomic site is 
described in terms of an average radius calculated 
according to the ordering determined or assumed for 
that particular site. 

The sphere-packing model has been used for: (i) 
predicting lattice parameters and order; (ii) estimating 
the changes in lattice parameters produced by dis- 
ordering after fast-neutron irradiation; (iii) explaining 
the lattice parameter changes due to varying com- 
position in binary o phases and to the addition of a 
third metal. 

The aim of the present work is to examine the 
reliability of that model in predicting order; this was 
suggested by the following points: 

1. The sphere-packing model needs to allow for a 
considerable distortion of the spheres occupying the E 
sites.* 

2. The above assumption makes it reasonable to 
expect a marked preference of some type of atom for 
these E sites. This has been verified by the present 

*The notation used by Wilson & Spooner (1973) has been 
adopted throughout the present work. 
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authors in the structure refinement of a phases. Since 
the E - E  interatomic distances are directly related to the 
parameter c, one should expect this parameter to be 
particularly sensitive to the ordering at the E sites. This 
sensitivity should be significantly marked in the case of 
alloys where the constituent atoms have rather different 
metallic radii; this is the case for Mo3Co 2 which is 
known to be ordered as a result of single-crystal 
analysis (Forsyth & Alte da Veiga, 1963). However, 
the values of ¢ calculated on the basis of this 
sphere-packing model for the ordered and the dis- 
ordered schemes, 4.815 and 4 .847A respectively, 
show no significant difference, the deviation being of 
the order of the general agreement, 1%, between 
observed and calculated parameters (Wilson & 
Spooner, 1973, Table 2). 

3. The tr phase Nb2A1 was studied by Brown & 
Forsyth (1961) using the X-ray single-crystal tech- 
nique. The final F o and (F  o -- Fe) Fourier projections 
clearly show that the structure is ordered; however, to 
support the theory, an order which is different from 
that experimentally determined has to be assumed. 

The formulae derived by Wilson & Spooner (1973) 
are the starting points for the mathematical analysis 
carried out in the next sections. 

2. Calculation of  parameters c and a 

The model creates the tr phase from three types of 
panel, each of which consists of spheres in contact; 
from these panels the estimates cl, c 2 and c 3 are 
obtained and a final estimate, c 0, of the parameter c is 
given by the weighted mean: 

C0 = (Cl + 4¢2 + 2C3)/7, (1) 
where 

c1=2( r  A + r  B) cos01 and sin 01=rB/(r  A + r B )  

c2 = (r B + r c + 2r o) cos 82 and 

sin 02 = (r B + rc)/  (r n + r c + 2ro) 
c 3 = 4re, 

r t (i stands for each of the five atomic sites A, B, C, D 
and E) being the radii of the spheres forming the 
panels. 
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For a particular alloy, the r t are derived from the 
metallic radii of the constituent atoms and the 
occupancy of the atomic sites. 

If the structure is randomly disordered, it is assumed 
that the radii of all the atoms have the same average 
value, r, which is determined solely by the atomic 
percentage composition of the alloy. On this 
assumption the above formulae give for the estimated 
value of ¢, now denoted by c': 

c' = 3.6172r. (2) 

The increment, rico, of the value of the function c o = 
f ( r i )  for increments fir t of the variables can be given, to 
first-order approximation, by Taylor's theorem: 

rico = ~ ( r  A + rn)[rA(r  A + 2rn ) - v2]6ra  

+ { { ra[ ra ( r  a + 2rn)] -1/= 

+ 2rD[rD(rn + r c + rD)l-U=}arn 

+ {rD[rD(r B + r c + r D ) l - X n &  c 

+ ¢~(r B + r c + 2 r o ) [ % ( r  n + r c + rD)l-U26rD 

+ ~}&E. (3) 

The increment, &' ,  of the value c' of the function for 
the randomly disordered structure is obtained from the 
expression of &0 considering that r A = . . .  = r e = r, and 
has the simpler expression: 

2 
& '  = 7 V/~ (2gra + 36r B + 2 &  c + 8 & o )  + ~6r/r, (4) 

where &~ = r~ - r (i standing for A . . . .  , E)  is a 
deviation from the random atomic radius at site i, thus 
giving a measure of some departure from random 
disorder, as r~ is the atomic radius for a particular 
ordering at site i. Then an estimate of c, now denoted 
by c~, can be obtained from the estimated random 
value, c', by 

C; = C' + &'.  (5) 

If we consider a binary alloy (X, Y), the radii of the 
constituent atoms being G and ry, the increments 6ry 
may be calculated in terms of the number of atoms of 
each type occupying the different atomic sites. If n~ is 
the number of atoms of type X at site i (n~ having a 
similar meaning), then, for the a phase structure: 

a A = 2  n x + ny 

s 4 n x + ny --- 

D D E n c + nCr=n~ + ny = n  x + ~ = 8  (6) 

and 

a r y ) - -  r 6r A = r~ --  r = ½(n~ r x + n ,  

= (r r - -  r) + ½nax(rx - rr). (7) 

Similar calculations for fir s . . . .  , fir e provide another 
way of writing the expression for & ' :  

1 
6 c ' -  14----~ [(60 + 1 6 V ~ ) ( r y -  r) 

c 4 n ~ +  3.46412n~ e) + (4n~ + 3n~ s + n x + 

× (rx-- ry)]. (8) 
The expressions for a 0 and a' are 

ao = (al  + az + a3) /3 ,  (9) 
where 

a I = 2 ( r  A + 2 %  + rc) cos (45 - ~0) 

--  2r  s r c / [ ~ / 2 ( r  s + 2rc)] 

and sin ~0 = rD/(r  A + rD) 

a 2 = v ~ r s  + [2r~ + 16(r2c + r n rc)] m 

a 3 = v / 2 r s  + (2 4 + 4ra rE) 1/2 + (2r~ + 4r  n rE) m 

and 
a'  --- 6.9381r. (10) 

On the basis of considerations similar to those made 
for the parameter c, the following expressions may now 
be derived for the parameter a: 

&0 V/2 = ---3- {[% + (r~ + 2r~ ro) ' /2l(rA + r o ) - '  

+ (r~ + 2% + r c ) (4  + 2r A rD) - m  

- ( r  A + 2r  D + rc)[( 4 + 2r A rD) ~n + r D] 

x (r~ + to) -2 + ( 4  + 2rAr/r) -u2  (ra + r/r)} 6rA 

+ { - r c ( r  s + 2rc) -1 + rn rc (rn  + 2rc)  -2 
3 

+ 2 + (r n + 4rc)[r ~ + 8(r~ + r n rc)] -1/2 

+ (rB + r~)(4 + 2rB r~)-"2}ar~ 

+ {[rD + (r  2 + 2r~ ro) ~/21 (r  a + ro) -1 
3 

--  rn(r  n + 2rc) -1 + 2r  n rc(rB + 2 % )  -2 

+ 4(2% + rn)[r2n + 8(r~ + rBrc ) ] -a / z I -arc  

+ V/2 {2[rD + ( 4  + 2rA ro)U2](ra + r o ) - '  
3 

+ (rA + r c + 2r D) 

x [1 + (r 2 + 2r  a ro ) -U2l ( ra  + rD) -1 

- -  ( r  A + r c + 2r  D) 

x [r D + ( 4  + 2ra rD)U2l (rA + rD) -z}  grD 

+ [rA( 4 + 2r  A r~) -1/2 
3 

+ r s ( r  ~ + 2 r B r e ) - m l & / r  (11) 
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~a' = ~ [(3 V/3/2 -- 1 /2)& a 
3 

+ (16/9 + 2 V ~ / 3  + 5/x / r i -7 )&.  

+ (7/18 + V/3/2 + 12/ \ / i -77)& c 

+ (2 + 2V/3/3)&o + ( 2 V ~ / 3 ) 6 r  e (12) 

~a' = 6.9381 ( r y -  r) + (0.4945nx a + 0.4885nx n 

+ 0.2455n c + 0.1859nx D 

+ 0.0680n~x)(r x - r,) (13) 

a'o=a' + 6a'. (14) 

The second-order terms, 62c ' and 6Za ' in (5) and 
(14), are 

dec' = ( 1 / 2 1 v / 3 r ) ( - - 6 2  r a + 2 &  a 6r n -- 262 rn -- 6rn 6rc 

+ 26r  n 6r D -- 32 r c + 46r  c Or o -- 402 r D) (15) 

and 

d E a ' =  (V /2 /3r ) [  (1 /2  - V/-J/2)dEra 

+ (4/27 - 8/17 V / ~ -  V/-3/9)dErn 

+ (4/27 -- 8/17 V/-~)dErc + ( - 2  V/-J/9)dEro 

+ (--2 V/3/9)dEre + (V/3/12 - 1/4)6r A ar c 

+ (1 1V/3/36 -- 1/4)6r a 6r o + (V/3/9)gr,  ar  e 

+ (--4/27 + 8 /17  X//-i-7)6rn 6r c 

+ (V/3/9)arn ar e 

+ (1/4 - - V / 3 / 1 2 ) & c & n l .  (16) 

3. Results and discussion 

Values given by the above formulae are tabulated in 
Table 1 for some tr phases. The phases chosen for 
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testing the derived formulae are representative of a 
variety of situations regarding composition, ordering 
and atomic radii; amongst all a phases, Mo3Co 2 is one 
of  those for which a large difference in the atomic radii 
of the constituent atoms occurs; attention has also been 
paid to the accuracy of the available data. 

The analysis of  Table 1 clearly shows that the 
second-order terms, dec' and dEa', are very small, their 
contributions to the estimates of  c and a (c~ and a~) 
being smaller than 0.006 and 0 .01% respectively, 
except in M%Co2 for which both contributions are 
0 .04%. This fully justifies the use of first-order terms 
only in the calculation of c~ and a~; a comparison of 
these values with c o and a 0 shows that the overall 
agreement is better than 0.06%. 

It is worth noting that the highest values of both 6c' 
and dEc ' occur for the alloy Mo3Co2; this supports the 
previously made statement that when the difference 
between the atomic radii of the constituent atoms is 
large, the parameter  c is expected to be rather sensitive 
to ordering. It is not clear, in the work of Wilson & 
Spooner (1973) which ordering is assumed in the 
calculations; for instance, there is disagreement be- 
tween their values for Mo3Co2, Co -- 4.815 and a 0 -- 
9 . 2 9 7 A ,  and those listed in Table 1. For the 
calculations carried out in the present work, the 
experimentally determined ordering was used. 

The agreement between the observed values c and a 
and those calculated on the basis of the sphere-packing 
model is < 1% (Wilson & Spooner, 1973); however, 
both Table 2 of  the paper by these authors and Table 1 
of the present work show that the calculated ordered 
and disordered values c o and c~ (and a 0 and a~) also 
agree within 1% in most cases. This appears to indicate 
that the estimates of c and a are not particularly 
sensitive to the ordering assumed, and that a prediction 
of order based on the comparison of these estimates 
with the observed values is not meaningful. 

Table 1. E s t i m a t e s  o f  the p a r a m e t e r s  c a n d  a (A)  f o r  s o m e  tr p h a s e s  

(X, Y) Nb66AI34 tm M060C040 (b) Cr65.sRu34.2 to) Cr46Fe54 (d) 

r~,ry 1.48 1.43 1.40 1.25 1.28 1.34 1.28 1.26 
r 1-463 1.340 1-301 1.269 

nix r t Or, nix r t cSr t nix r t cSr I nix r t ~r  t 
A 0 1.43 -0-033 0 1.25 -0-090 1-6 1.292 --0.009 0.6 1.266 --0.003 
B 4 1.48 +0.017 4 1.40 +0.060 2.5 1-303 +0.002 2.2 1.271 +0.001 
C 8 1.48 +0.017 7 1.38 +0.040 4.8 1-304 +0.004 3.6 1.269 -0.000 
D 0 1.43 -0.033 0 1.25 --0.090 4.4 1.307 +0.007 2.8 1.267 --0.002 
E 8 1.48 +0.017 7 1.38 +0.040 6.6 1-291 --0.010 4 1-270 +0.001 

&' ~a' --0.021 --0.006 --0.058 --0.002 --0.004 0.007 --0-002 --0.003 
~2C' ~2a' --0.000 --0"000 --0"002 --0.004 4 X 10 -6 3 X 10 -5 --I X 10 -6 --3 X 10 -6 
C' a' 5-292 10.151 4.847 9.297 4.704 9.020 4.591 8.806 
C~ a~ 5-271 10.145 4.789 9"295 4-700 9.027 4-589 8"803 
c o a 0 5.271 10.145 4.787 9.294 4.701 9.030 4.589 8.803 

4.8269 9.2287 4-7430 9.0635 
Cob s aob s 5.186 9.943 +--0.0006 +-0.0004 +0.0005 +0.0005 4.544 8.799 

References: (a) Brown & Forsyth (1961); (b) Forsyth & Alte da Veiga (1963); (c) Alte da Veiga, Costa, de Almeida, Andrade & 
Matos Beja (1980); (d) Aigie & Hall (1966). 
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This becomes evident if expressions (8) and (13) 
derived for the increments 6c' and 6a' are investigated 
in detail. For a given alloy, the values of r x, ry and r 
being fixed, only the nix depend on the ordering 
assumed. However, it is clear that these can be varied 
without altering the value of & '  or 6a'. Taking, for 
example, expression (8), it may be readily seen that Jc', 
and hence c~, remain the same providing the sum 

4n] + 3nx n + nx c + 4nO + 3.4641nx e 

is kept constant. This is possible if an nix, whose 
coefficient has an intermediate value, is increased (or 
decreased), while two others, with a higher and a lower 
coefficient, are decreased (or increased) in a certain 
way; this is, for example, the case of nx A, nx n and nx c, then 

4nx a + 3nx n + n c = 4(nx a + Anax) + 3(nx n -- Anax - AnCx) 

+ (n c + AnC), 

which is constant for any AnAx = 2An c. 
There is, then, an infinite number of solutions.* Table 

2 shows the observed ordering in Mo3Co z and two 
others corresponding to solutions, An~, which are 
integers; both ordering 1 and ordering 2 are well away 
from the observed one and in marked disagreement 
with that observed in the o phases; however, all three 
yield the same calculated value, c~. A final test of the 
equivalence between the original formulae and those 
derived in the present work is to use the solutions of the 
latter, e.g. ordering 1 and ordering 2, and carry out the 
calculations using the original expressions (1) and (9); 
this is done for c o in Table 2. 

The above arguments support the conclusion that the 
sphere-packing model should be treated with caution 
when used in the prediction of order in the o phases. 
This is related to the fact that it appears not to be 
correct to calculate the r i taking into account the 
metallic radii of the constituent atoms and the 
occupancy of the atomic sites only, but the constraint 
that the r i are radii of spheres in contact should be 

*Wilson & Spooner (1977, p. 1656) have pointed out the 
difficulty in demonstrating the uniqueness of the order schemes 
chosen. 

Table 2. Ordering schemes f o r  Mo3Co 2 yielding a 
constant  c'o; x and  y refer to Mo and Co, respectively 

Order n~ ~ ~ ~ n c n c ~ ~ ~ 

Observed 0 2 4 0 7 1 0 8 7 1 
1 2 0 1 3 8 0 0 8 7 1 
2 0 2 1 3 8 0 2 6 7 1 

imposed. This restriction would forbid solutions such as 
those corresponding to ordering 1 and 2 of Table 2, 
which violate the requirement of contacting spheres. 
From this point of view, the assumption of the same 
average value, r, for the atoms at every atomic site in a 
randomly disordered structure is also questionable. 

Finally, it must be pointed out that the correctness of 
the original expressions (1) and (9), and consequently 
of those derived in the present work, is restricted by the 
assumption of independence of the variables rt, which 
does not correspond to the actual physical situation. 

This mathematical analysis was undertaken partly as 
a consequence of a referee's comment to the paper The 
ordering o f  the tr phases  Cr2Ru and Cr2Os (Alte da 
Veiga, Costa, de Almeida, Andrade & Matos Beja, 
1980). The authors would like to thank that referee and 
the referee of the present work whose comments 
contributed to improve the final presentation of both 
papers. 
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